Proving that $\operatorname{Fib}(\mathrm{n})=\frac{\phi^{n}-\gamma^{n}}{\sqrt{5}}$ where $\phi=\frac{1+\sqrt{5}}{2}$ and $\gamma=\frac{1-\sqrt{5}}{2}$.
I prove this using the inductive defination of $\operatorname{Fib}(\mathrm{n})$ and strong induction. Evaluating the base case is left to the reader. So, given $\operatorname{Fib}(\mathrm{a})=\frac{\phi^{a}-\gamma^{a}}{\sqrt{5}}$ for all $a<n \mathrm{I}$ wish to show $\operatorname{Fib}(\mathrm{n})$ as above.

From the defination $\operatorname{Fib}(\mathrm{n})=\operatorname{Fib}(\mathrm{n}-1)+\operatorname{Fib}(\mathrm{n}-2)=\frac{\phi^{n-1}-\gamma^{n-1}}{\sqrt{5}}+\frac{\phi^{n-2}-\gamma^{n-2}}{\sqrt{5}}$.
I will show that $\frac{\phi^{n-1}-\gamma^{n-1}}{\sqrt{5}}+\frac{\phi^{n-2}-\gamma^{n-2}}{\sqrt{5}}=\frac{\phi^{n}-\gamma^{n}}{\sqrt{5}}$ if, and only if, True.
Multiply everything by $\sqrt{5}: \phi^{n-1}-\gamma^{n-1}+\phi^{n-2}-\gamma^{n-2}=\phi^{n}-\gamma^{n}$
And expand: $\frac{(1+\sqrt{5})^{n-1}}{2^{n-1}}-\frac{(1-\sqrt{5})^{n-1}}{2^{n-1}}+\frac{(1+\sqrt{5})^{n-2}}{2^{n-2}}-\frac{(1-\sqrt{5})^{n-2}}{2^{n-2}}=\frac{(1+\sqrt{5})^{n}}{2^{n}}-\frac{(1-\sqrt{5})^{n}}{2^{n}}$
Multiply top and bottom of each fraction to get 2^{n} on the bottom of everything and multiply through: $2(1+\sqrt{5})^{n-1}-2(1-\sqrt{5})^{n-1}+4(1+\sqrt{5})^{n-2}-4(1-\sqrt{5})^{n-2}=$ $(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}$.

Rearrange: $(1+\sqrt{5})^{n-2}\left(2(1+\sqrt{5})+4-(1+\sqrt{5})^{2}\right)=(1-\sqrt{5})^{n-2}(2(1-\sqrt{5})+4-$ $\left.(1-\sqrt{5})^{2}\right)$

Simplify: $(1+\sqrt{5})^{n-2}(0)=(1-\sqrt{5})^{n-2}(0)$
Simplify: $0=0$
Simplify: True. Finished
$\operatorname{Fib}(\mathrm{n})$ is the closest integer to $\phi^{n} / \sqrt{5}$. We know that $\operatorname{Fib}(\mathrm{n})=\frac{\phi^{n}-\gamma^{n}}{\sqrt{5}}=\frac{\phi^{n}}{\sqrt{5}}-\frac{\gamma^{n}}{\sqrt{5}}$. Since $\frac{\gamma^{n}}{\sqrt{5}}<0.5$ (for $n \geq 0$) this is true.

