Proving that Fib(n) = $\frac{\phi^n - \gamma^n}{\sqrt{5}}$ where $\phi = \frac{1 + \sqrt{5}}{2}$ and $\gamma = \frac{1 - \sqrt{5}}{2}$.

I prove this using the inductive defination of Fib(n) and strong induction. Evaluating the base case is left to the reader. So, given Fib(a) = $\frac{\phi^a - \gamma^a}{\sqrt{5}}$ for all a < n I wish to show Fib(n) as above.

From the defination Fib(n) = Fib(n-1) + Fib(n-2) = $\frac{\phi^{n-1}-\gamma^{n-1}}{\sqrt{5}} + \frac{\phi^{n-2}-\gamma^{n-2}}{\sqrt{5}}$. I will show that $\frac{\phi^{n-1}-\gamma^{n-1}}{\sqrt{5}} + \frac{\phi^{n-2}-\gamma^{n-2}}{\sqrt{5}} = \frac{\phi^n-\gamma^n}{\sqrt{5}}$ if, and only if, True. Multiply everything by $\sqrt{5}$: $\phi^{n-1} - \gamma^{n-1} + \phi^{n-2} - \gamma^{n-2} = \phi^n - \gamma^n$ And expand: $\frac{(1+\sqrt{5})^{n-1}}{2^{n-1}} - \frac{(1-\sqrt{5})^{n-1}}{2^{n-1}} + \frac{(1+\sqrt{5})^{n-2}}{2^{n-2}} - \frac{(1-\sqrt{5})^{n-2}}{2^{n-2}} = \frac{(1+\sqrt{5})^n}{2^n} - \frac{(1-\sqrt{5})^n}{2^n}$ Multiply top and bottom of each fraction to get 2^n on the bottom of everything and multiply through: $2(1+\sqrt{5})^{n-1} - 2(1-\sqrt{5})^{n-1} + 4(1+\sqrt{5})^{n-2} - 4(1-\sqrt{5})^{n-2} = (1+\sqrt{5})^n - (1-\sqrt{5})^n$. Rearrange: $(1+\sqrt{5})^{n-2}(2(1+\sqrt{5})+4-(1+\sqrt{5})^2) = (1-\sqrt{5})^{n-2}(2(1-\sqrt{5})+4-(1-\sqrt{5})^2)$ Simplify: $(1+\sqrt{5})^{n-2}(0) = (1-\sqrt{5})^{n-2}(0)$ Simplify: 0 = 0Simplify: True. Finished

Fib(n) is the closest integer to $\phi^n/\sqrt{5}$. We know that Fib(n) = $\frac{\phi^n - \gamma^n}{\sqrt{5}} = \frac{\phi^n}{\sqrt{5}} - \frac{\gamma^n}{\sqrt{5}}$. Since $\frac{\gamma^n}{\sqrt{5}} < 0.5$ (for $n \ge 0$) this is true.