
Google Books: Making the public domain universally accessible

Adam Langley and Dan S. Bloomberg

{agl,dbloomberg}@google.com

Copyright 2006 Society of Photo-Optical Instrumentation Engineers.

This paper will be published in Document Recognition and Retrieval XIV and is made available as an electronic
preprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple
reproduction, distribution to multiple locations via electronic or other means, dupli- cation of any material in this paper for
a fee or for commercial purposes, or modification of the content of the paper are prohibited.

ABSTRACT
Google Book Search is working with libraries and publishers around the world to digitally scan books. Some of those
works are now in the public domain and, in keeping with Google’s mission to make all the world’s information useful and
universally accessible, we wish to allow users to download them all.

For users, it is important that the files are as small as possible and of printable quality. This means that a single codec
for both text and images is impractical. We use PDF as a container for a mixture of JBIG2 and JPEG2000 images which
are composed into a final set of pages.

We discuss both the implementation of an open source JBIG2 encoder, which we use to compress text data, and the
design of the infrastructure needed to meet the technical, legal and user requirements of serving many scanned works.
We also cover the lessons learnt about dealing with different PDF readers and how to write files that work on most of the
readers, most of the time.

Keywords: Google, books, PDF, public domain, JBIG2, leptonica, Hausdorff, correlation, mixed raster, open source

1. INTRODUCTION
Google Book Search launched in late 2004 as part of Google’s mission to organize the world’s information and make it
universally accessible and useful. Book Search consists of two programs: the publisher program and the library project.
The first allows publishers to submit their books so that users can find them when searching. The second involves agree-
ments with several major libraries, including Oxford’s Bodleian and the University of Michigan, to scan and include their
collections in our index. It is this latter project which results in our acquisition of works for which the copyright has expired
worldwide, and hence we may freely share the results.

These books are available, in full, for viewing online at http://books.google.com, but this interface presents
several challenges. First, the images are only 575 pixels wide and so the resolution is minimal for all but the very smallest
books. Second, a user has to be online to read the book, frustrating those who might want to read on other devices such as
e-book readers. And lastly, it’s not practical to print the book out from the web interface.

Because of this we wanted to offer a format where users could read the book offline, in programs other than a browser,
and which offered sufficient resolution for high quality printing.

1.1. PDFs - a widely supported mixed-raster container
We have little interest in writing client-side applications for the viewing of our contents. The breadth of different platforms
in use means that such an undertaking would need to run in many diverse environments and, even if the project were open
source, the effort required to support it is not practical.

Two widely used and standard formats for mixed-raster documents are PDF1 and DJVU.2 A decision of which to use
depends on factors involving both the encoding and decoding processes. On the encoding side, we will see that the best
tradeoff between coding rate and image quality is to have lossy compression for both foreground and background, and both
PDF and DJVU support high quality lossy compression for images and text. However, DJVU encoding uses non-standard
compression methods, for both the continuous tone background (wavelet) and the binary foreground mask, whereas PDF

uses encoding methods that have gone through standards committees for both (JPEG2000 and JBIG2, respectively). For
decoding, the user’s ability to view the pages depends on the availability of client programs to rasterize the page images.
Both standalone and browser plug-in clients exist for DJVU and PDF, but the installed base for PDF clients, notably
Adobe’s free Acrobat Reader, is far larger. Additionally, utilities for printing PDF are more universal and efficient.

It is also important that the resulting files are as small as possible. The raw inputs to the compression process are
several gigabytes in size and, even given the increasing penetration of broadband, few of our users would be willing
to download and store such huge files. Thus we want to use the best compression formats so that the user experience
is as good as possible. These formats are, inevitably, more costly in terms of computation for both the encoding and
decoding. However, we have the computing resources to perform the encoding and are willing to invest them because
of the importance of minimising file size. The computation involved in decoding was an unforeseen issue which will be
covered later in the paper.

We were then presented with two decisions: which compression formats to use for images and which for text. Our
major sources of images are book covers, drawings in the books and misclassified text. Because these books are out of
copyright, they are old and have very few full-colour photos; most images in the books are black and white. The covers of
books are often colour, but they carry little important information and it’s not useful to have high quality representations
of them. Misclassified text is a reality of dealing with these old books. It’s rare, but we should be careful that the resulting
text is still readable, even if of a much lower quality than correctly identified text.

We selected a number of representative samples of these three types of images and took the JPEG format as our baseline
(with the IJG encoder). This was compared with the wavelet based JPEG2000 using the Kakadu encoder.3 We reduced
the JPEG quality level so that the image data was as small as possible, while still being of acceptable quality. Then we
tuned the size of the JPEG2000 images until we felt they were roughly the same quality. This is a difficult comparison to
make because the different formats degrade in different ways when stressed. In JPEG the edges of the DCT blocks become
noticeable and mosquito noise appears where high frequency components cause ringing. In JPEG2000, texture disappears
and areas smudge out. In this highly subjective test, JPEG2000 resulted in smaller images and this is what we chose to use.

JPEG2000 does not have a defined quality metric like that of JPEG, so we use a slope-distortion metric that is specific
to the Kakadu encoder. In our tests, this appears to work well and it matches closely with our subjective impression of
image quality.

In choosing a text compression format, our goal is to offer 600-dpi, 1-bit images at the lowest possible bitrate. This
is a very respectable resolution and is easily readable on screen and when printed. Each page is about 4MB in size,
uncompressed. For an example, see Figure 1.

In PDF, there are three possible candidates for the compression format: G4, FLATE and JBIG2. G4 is simple: it
involves a fixed Huffman table which is used to encode the bits of the image as a raster. It is lossless, quick and each
page is encoded independently. FLATE is also lossless, using a univerisal coder (zlib) along with 2D context estimation.
However, for text the compression is not as good as G4.

We used the book Flatland4 to test the efficacy of these different formats. FLATE compressing this 161 page book
results in a 19.4MB PDF file (120KB/page), G4 produces 8.5MB (52 KB/page) but JBIG2∗ achieves 4.2MB (26KB/page).

JBIG2 is significantly more complex. It can optionally use Huffman compression, but in practice arithmetic encoding
is used. It can encode the images in a raster way, like G4, but to get the best compression it can find symbols on the page,
encode them and then encode the placement information. It can also work on each page independently, but to get the best
compression rates multiple pages must be compressed at once.

A brief survey of commercial encoders turned up none that appeared suitable. The encoder had to be able to run within
our custom, Linux based environment. Further, past experience suggests that binary-only libraries cause future problems
when ABIs change. Thus we embarked on writing our own JBIG2 encoder5 for this project using a component classifier
from the leptonica open source library. In the next section we describe the features of this classifer that make it suitable for
use in a JBIG2 encoder, followed by a description of the JBIG2 encoder itself.

∗With a context size of 20 pages

Figure 1. An example of a 600-dpi page: page 44 of the Flatland PDF

Figure 2. A JBIG2 arithmetic encoded generic region heatmap: the darker the pixel the more bits were spent encoding it. As expected,
edges cost the most to code; horizontal and vertical edges are cheaper.

2. JBIG2 COMPRESSION
A JBIG2 bit stream can be thought of as a domain specific language for drawing pages and, as such, it has three basic
modes of operation which we will be considering:

• Generic region encoding: an adaptive arithmetic encoding of 1 bpp (bit per pixel) images

• Symbol encoding: The ability to build dictionaries of 1 bpp images and place them on the page. The dictionaries can
be shared across pages and a page may use several dictionaries

• Refinement: The ability to take a 1 bpp image and correct it by altering some of its pixels. The mask of pixels is
arithmetically encoded and the unrefined image serves as context to the encoder.

There exist Huffman versions of all of these, and also a mode for encoding halftone regions. We do not support either in
our encoder, nor do we consider them here. Huffman compression is inferior and halftone regions are classified as images
and JPEG2000 encoded.

The most obvious way to compress pages is to losslessly encode them as a single 1 bpp image (see Figure 2). How-
ever, we get much better compression by using symbol encoding and accepting some loss of image data. Although our
compression is lossy it is not clear how much information is actually being lost - the letter forms on a page are obviously
supposed to be uniform in shape, the variation comes from printing errors and lack of resolution in image capture.

Given that we have chosen to perform symbol encoding, the encoder is as simple as possible. Connected components
are gathered from a set of some number of pages, those which appear on more than one page are placed in a global symbol
dictionary, and the rest are placed in a per-page dictionary. The page information itself consists of placement information
for the symbols. Refinement is not used since it is costly to correct too many pixels and it makes little difference visually.

2.1. Unsupervised classification of binary components
The leptonica implementation of the JBIG2 classifier6 performs a greedy unsupervised classification of ‘tokens’ in a 1 bpp
image. The ‘tokens’ can be connected components (CC) or aggregates of them. The method is to make a decision, for every
new token, whether it belongs to an existing class or should form a template for a new class. The challenge is to provide

an implementation that works efficiently for millions of tokens, but also has sufficient flexibility to allow controlling the
accuracy of the match within a class. As such, our implementation has a number of useful and important features, each of
which is considered in more detail:

• On the input side, it will classify as tokens either CC, characters, or words in the roman alphabet.

• The image comparison function can be either a windowed rank Hausdorff or a windowed correlation. The correlation
method has a correction factor depending on the weight (thickness) of the characters.

• For each new instance, it does the matching over a small subset of existing templates that expands sub-linearly with
the number of templates.

• To get the best template location for each instance, a final correlation-based correction is performed after the cen-
troids are aligned.

2.1.1. Selection of binary tokens for classification

Connected components are found efficiently using Heckbert’s run-based flood fill7 to successively remove each one, com-
puting the bounding box at the same time. Characters typically require aggregation of components including dots, and are
extracted from a mask generated by a morphological closing of the input image with a vertical structuring element (Sel).
Words are trickier, because the spacing between words can vary significantly, and they are extracted at a resolution of about
150 ppi (pixels/inch). The interword spacing is analyzed statistically by carrying out a sequence of horizontal dilations
with a Sel of width 2, each dilation followed by a computation of the number of CC. With successive dilations, the number
of CC falls as the characters within a word have been joined. This is then followed by a plateau in the CC count, where the
words remain separated, and finally, with further dilations, the words begin to join and the number of CC resumes its fall.

We next consider two methods, Hausdorff and correlation, for comparing two image ”tokens” to make a decision
whether they are sufficiently similar to be assigned to the same class. In all cases, one of the tokens is a template for an
existing class, and the other is an instance of a component to be tested.

2.1.2. Hausdorff image comparator

The Hausdorff distance H is a true metric (that obeys the triangle inequality) for comparing two 1 bpp images.8 It is
defined as the maximum of two directed Hausdorff distances, h, where the directed Hausdorff distance between images A
and B is the maximum over all pixels in A of the distance from that pixel to the closest pixel in B. Formally, if we define
the distance from a point p in A to the nearest point in the set B to be d(p,B), then the directed Hausdorff distance from
A to B is

h(A, B) = max
(p∈A)d(p, B)

and the Hausdorff metric is

H(A, B) = max(h(A,B), h(B, A))

The Hausdorff distance is typically sensitive to pixels that are some distance away from the the nearest boundary pixel.
Because one or both images can have salt or pepper noise that is far from a boundary pixel, a rank Hausdorff comparator,9,10

with a rank fraction slightly less than 1.0 can be used to give some immunity to such noise. However, rather than actually
computing the Hausdorff distance between the two tokens, which is expensive, a decision is simply made whether the
distance is less than some threshold value. Additionally, the comparison is made for a single relative alignment where the
two tokens have coincident centroids. With these simplifications, the template and instance can be dilated in advance. Then
the Hausdorff test checks that the dilated image of one contains all (or a rank fraction) the pixels of the undilated image of
the other, and the tests are run in both directions. A successful match causes assignment of the instance to the template’s
class.

The strength of the Hausdorff match is that it uses pixels far from any boundary, where variability in pixel value is
expected to be low. For an odd dimension Sel, say 3×3, with the origin of the Sel at the Sel center, dilation is symmetric,
and the Hausdorff distance threshold is an integer (1 for 3×3, 2 for 5×5, etc.). However, for small text, character confusion
can occur even using a Hausdorff distance threshold of 1. Furthermore, for very small components, such as punctuation,
using a 3×3 Sel in the presence of halftone dots often results in use of irregular halftone dot components as templates for

punctuation. Therefore, it is necessary to use a 2×2 Sel, which is asymmetric about its origin, to get acceptable results. It
is then necessary to choose a rank fraction of about 0.97. Use of 0.99 or greater gives far too many classes, and use of 0.95
or smaller results in character confusion.

2.1.3. Correlation image comparator

Because very tiny Hausdorff distance thresholds are required to correctly classify small text components, the pixels near the
boundary are important. Consequently, correlation comparators are preferred to rank Hausdorff, because the former can be
more finely tuned. When using a correlation comparator, the centroids are again aligned when doing the comparison. Let
image tokens 1 and 2 be the instance and template, respectively. Denote the number of foreground pixels in images 1 and 2
by |1| and |2|, and the number in the intersection of the two images as |1⊕2|. Then the correlation is defined to be the ratio:
(|1⊕ 2|)2/(|1| × |2|). This score is compared with an input threshold. However, because two different thick characters can
differ in a relatively small number of pixels, the threshold is modified depending on the fractional foreground occupancy
of the template, given by R = |2|/(w2 × h2), where w2 and h2 are the template dimensions. The modified threshold t′ is
related to the input threshold t and a weighting parameter f (0.0 ≤ f < 1.0) by: t′ = t + (1.0− t)×R× f . Values of t =
0.8 and f = 0.6 form a reasonable compromise between accuracy and number of classes for characters with 300 ppi scans.

2.1.4. Hashing for efficient encoding

The classifier is typically used on text characters, and it must be designed to avoid putting different characters in the same
class. Because there is relatively little penalty for oversegmenting (i.e., having multiple classes for the same typographic
character), a large document consisting of hundreds of pages can have thousands of templates. The classifier must effi-
ciently match each input component (instance) against this expanding set of templates. The number of resulting templates
is reduced by removing the halftone image regions before classifying the remaining components. Even more important,
the time to classify an instance should grow significantly slower than the number of templates. We only need to consider
templates that are roughly the same size as the instance, but we can not afford a linear search through the set of templates.
To find the possible templates efficiently, hash the size into one of a large set of buckets (we use the prime number 5507) by
taking (width × height) mod 5507. Then set up an array (NumaHash) of arrays of template ids for each bucket. Because
the instance dimensions can differ from its template by up to 2 pixels, for each instance, list the 25 buckets given by ((width
± 0,1,2) × (height ± 0,1,2)) mod 5507 and match the templates in these buckets against the instance, starting at the center
and spiralling out. For each template in this ordered list, first check the actual dimensions, because we hash on the product.
Then measure the similarity (correlation or rank Hausdorf) in a greedy fashion: (1) when the number of non-conforming
pixels exceeds the allowed rank value, go to the next template; (2) accept the first template where the match completes
within the allowed rank value.

2.1.5. Final correlation to reduce baseline jitter

After an instance is matched to a template, it is necessary to find the best location. Surprisingly, although the matching
score is computed with centroids aligned, in a significant fraction of instances, the best alignment (correlation-wise) differs
by one pixel from centroid alignment. This correction is important for appearance of text, where the eye is sensitive to
baseline wobble due to a one-pixel vertical error. We find the nine correlation scores between template and instance,
allowing the template location to move up to one pixel in both horizontal and vertical directions from centroid alignment.
The position chosen is that with a minimum in the number of pixels in the XOR between the two images.

3. BUILDING THE PDF
3.1. Linearisation
Linearised PDFs (see appendix F of the PDF specification1) are a special organisation of PDFs designed for incremental
loading over the web. They appear well formed to readers that don’t understand the linearisation. However, for readers
that do understand it, which is currently limited to Adobe’s browser plugin, there are several structures that allow the first
page to be displayed immediately and further pages to be displayed without downloading the whole.

The objects needed for the first page appear at the beginning of the file, along with a hint table that gives the offsets,
lengths and other information for the rest of the pages. A special dictionary is also included at the beginning of the file that
marks the file as being linearised. Upon seeing this, a capable reader can close the HTTP connection to stop the download

Figure 3. A graphical representation of the requests made by the Acrobat Plugin when opening a linearised PDF file

and then issue requests for specific byte ranges on a new connection. To reduce latency, the Adobe plugin also preloads
some number of pages in advance.

This would appear to be ideal for us, reducing both the bandwidth and the user’s latency. However, we do not linearise
our files due to several factors. The first is the unfortunate behavior of the plugin. Figure 3 shows the byte ranges requested
by the plugin following the opening of a linearised version of one of our PDF files. The vertical axis is the logarithm of
the byte offset and the horizontal axis indexes the range requests. The taller the bar, the larger the range requested, but this
is complicated by logarithmic y axis which causes requests closer to the beginning of the file to appear larger. Requests
which ended up exceptionally short in this graph where expanded to a minimum size.

From the graph one can see that the plugin starts by loading from the cross-reference section at the end of the PDF
and then loads the hint tables and objects of the first page. It also preloads several following pages, generating many more
requests.

These range requests are batched into HTTP requests in groups of about four. Some ranges are contiguous (and yet
not merged) and some ranges even overlap. Even when ranges are very close together (separated by as little as one byte),
separate ranges are requested. If we were to serve these requests, they would be load balanced across many different
servers and each must perform a significant amount of processing in order to serve a tiny reply. This amount of overhead
is unacceptably wasteful.

Second, generating the linearised PDFs adds a lot of complexity. As the above data shows, we did implement this, but it
is very difficult using only the Adobe plugin as an oracle of correctness; the PDF specification contains 11 implementation
notes documenting ways in which their own appendix is incorrect. Also, we must consider the cost of maintaining this
code. Complexity in code costs forever more.

The existing web interface already provides a way for users to read a small section of the book, and the ability to
download PDFs is designed for those who are downloading the whole book to print it or read offline. Because linearisation

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 0 20 40 60 80 100 120 140 160 180

B
yt

es

Context size (in pages)

File size

Figure 4. The file size (in bytes) of Flatland with different compression context sizes.

offers little advantage in this mode of use, and considering as the issues outlined above, we chose not to linearise these
files.

3.2. JBIG2 context size
With an image format that can extract cross-page information, it is beneficial to present as many pages as possible to the
compressor. Figure 4 shows the file size of the resulting PDF when different numbers of pages are presented to the JBIG2
compressor at once. In this example the book is Flatland,4 which has 161 pages. This shows clearly the improvement with
increasing context size. A large context size will slow down the compression, but we have the computational resources to
compress entire books at once, and because the smaller file sizes would benefit our users we would choose to do so.

Unfortunately, both our canonical PDF viewers (xpdf and Acrobat Reader) slow down considerably as the context
size increases. To measure this we instrumented xpdf to time the rendering process. We had xpdf render the first 20
pages of Flatland with varying context sizes. Figure 5 shows the results. The user experience (in terms of time to render a
page) degrades markedly as context size increases; the experience with Acrobat is similar.

Because xpdf is open source we can tell why this happens: xpdf fails to cache the large, shared symbol dictionary
and renders it once for every page. We can’t look at the Acrobat Reader source, but it seems very likely that the issue is the
same. We could have fixed xpdf, but not Acrobat and so to decision was made to use a context size of 16 in production.
Hopefully, at some point in the future the readers will be more capable. Then, larger context sizes should actually speed
up the rendering time, at the cost of extra initial processing and memory use, and we will be able to shrink all the files.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 20 40 60 80 100 120 140 160 180

P
ag

e
re

nd
er

 ti
m

e
(s

ec
on

ds
)

Context size (pages)

Seconds to render a page

Figure 5. The time (in seconds) for xpdf to render a page of Flatland with different compression context sizes.

4. SERVING INFRASTRUCTURE
Once the PDFs are generated, they must be served to the world at large. This is complicated by the fact that the exact
number of pages and the contents of at least the first two of these pages is not fixed until we have the HTTP request for the
file.

At the beginning of every PDF file are one or more pages of legal text, and these need to be internationalised to the
language of the user. Because these files can be copied between users once they are out in the wild, we include the legal
text first in the language of the user (as determined by the language of the web interface that they are using) and then in the
language of the book, the hope being that anyone who reads the book can, at least, read the second of these.

If the two languages are the same, we only include one copy of the legal text, thus the number of pages in the PDF can
change with each request. This means that we cannot simply generate PDFs and serve them with a web server, nor can we
generate the PDFs from raw data on the fly due to the amount of computation involved. Thus, generating the PDFs is a two
stage process. First the raw data for each book is processed into an intermediate form and a number of byte strings, which
are stored. Second, at serving time those byte strings are fetched on the fly and built into a final PDF file.

The intermediate form contains a number of page structures, one for each non-dynamic page in the book. Each page
contains an optional JBIG2 stream, an optional JBIG2 context stream (shared by several pages) and zero or more JPEG2000
streams with position information. Each page structure contains everything except the image bitstreams themselves, which
are referred by their number. A set of such page structures is called the outline of the book. The outline contains all the
information needed to determine the byte offset of every object in the PDF.

The raw book data is stored in GFS11 (Google File System) at several locations. The processing of the raw data
to generate the intermediate form involves all the image compression work and hence is very compute intensive. This

computation is carried out off-line in a process similar to a MapReduce.12 The raw data for each book is mapped to a set
of image bitstreams and the outline data for the book. Using the resources at Google, the whole process for all books takes
less than two days to complete.

The outlines are stored in a Bigtable.13 This is a sparse, distributed, persistent multi-dimensional sorted map, developed
at Google that maps tuples of (row, column, time) to a string. In this case, the row is our book identifier, the columns contain
the elements in the outline, and we ask for the most recent entry.

The byte strings are also stored in a separate Bigtable where the row is “bookid/streamnumber” and there is a single
data column. Again, we ask for the most recent entry. Because of the way Bigtable works, this groups the byte strings for
a given book together as much as possible, which improves the hit rates of the caches.

Bigtable only provides for transactions at the row level, so we need a way to prevent the regeneration of the intermediate
form from partially overwriting live data which is being served to the world. So, before we start writing, we find the greatest
index of any byte string in the Bigtable. When new byte strings are added they are numbered starting from this index, so
that they don’t overwrite any live data. Finally, the new outline is inserted (atomically), which makes the new data live.
After a day we can be sure that any downloads that were reading the old data have ended, so the old data can be removed.

We can now describe the serving process. When a request for a PDF arrives, we fetch the outline from the Bigtable.
Based on this, the language of the book and the language of the user, we compute the length of the PDF and the lo-
cations where all the byte strings need to be inserted. This allows us to return HTTP reply headers that include the
Content-Length header. From here the non-image regions of the PDF are generated on demand and we start pipelin-
ing fetches for byte strings from the Bigtable, interleaving them as required.

5. ACKNOWLEDGMENTS
We have given a technical description of a scalable system and some of the components we built for serving, quickly
and efficiently, a very large number of scanned books over the internet. However, the description is incomplete without
highlighting a very unusual aspect of the context in which the work was done; namely, through a publicly held corporation
(Google). As mentioned in the beginning, the Book Search program fits clearly into Google’s mission to make information
accessable and useful. In pursuit of this goal, Google is maximizing the accessibity of books that are in the public domain,
both through online search and serving, and for offline reading and printing. And there is no charge to the user for the
services. We are very grateful to a large number of people for supporting this vision and implementing these policies; in
particular, Product Managers Adam Smith and Adam Mathes, and Engineering Directors Dan Clancy and Chris Uhlik.

Additionally, Google internally makes tremendous use of Open Source software, and supports Open Source develop-
ment in a number of ways. We wish to thank Chris DiBona for developing a number of Google Open Source initiatives,
and for being a proactive advocate of open sourcing Google code.

REFERENCES
1. PDF Reference, Adobe System Incorporated, fifth ed.
2. “Djvu.” http://www.djvuzone.org.
3. “Kakadu.” http://www.kakadusoftware.com.
4. E. A. Abbott, Flatland, A Romance of Many Dimentions, Little, Brown, and Company, 1899.
5. A. Langley, “jbig2enc.” http://www.imperialviolet.org/jbig2.html.
6. D. S. Bloomberg, “Leptonica.” http://www.leptonica.org/jbig2.html.
7. A. S. Glassner, ed., Graphics Gems, Academic Press, 1990. 275–277,721–722.
8. D. Huttenlocher, D. Klanderman, and W. Rucklidge, “Comparing images using the Hausdorff distance,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 15, pp. 850–863, September 1993.
9. D. S. Bloomberg and L. Vincent, “Blur hit-miss transform and its use in document image pattern detection,” SPIE

Conf. 2422, Doc. Rec. II , pp. 278–292, Feburary 1995.
10. D. S. Bloomberg and L. Vincent, “Pattern matching using the blur hit-miss transform,” Journal Elect. Imaging 9(2),

pp. 140–150, April 2000.
11. S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in 19th ACM Symposium on Operating Systems

Principles, pp. 29–43, 2003.

12. J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,” in OSDI’04: Sixth Symposium
on Operating System Design and Implementation, pp. 137–150, 2004.

13. F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, and et al, “Bigtable: A distributed storage system for structured data,”
in OSDI’06: Seventh Symposium on Operating System Design and Implementation, pp. 725–726, 2006.

