
Probing the viability of TCP extensions

Adam Langley
Google Inc

agl@google.com

ABSTRACT
TCP was designed with extendibility in mind, chiefly re-
flected in the options mechanism. However, there have been
repeated observations of misbehaving middleware that have
hampered the deployment of beneficial TCP extensions.

This paper reports on an experiment to determine how preva-
lent three types of behaviour are. We find that 9.08% of
hosts don’t respond to SYN frames with payloads, 0.17% of
hosts don’t respond to SYN frames with non-standard op-
tions and 0.56% of hosts don’t respond to SYN frames which
attempt to negotiate ECN.

1. INTRODUCTION
When developing TCP extensions, authors have to be con-
stantly aware that the public Internet is a hostile place for
the non-conformist frame.

Explicit congestion notification[11] allows for routers using
active queue management to mark frames that would oth-
erwise have been dropped. These marked frames affect con-
gestion control exactly as if a frame had been dropped, but
do not require retransmissions etc.

ECN has been shown in simulations to be of significant ben-
efit[6] and development continues with the recent work on
adding ECN to SYN/ACK frames[7].

However, ECN is rarely enabled for fear of running afoul of
malconforming middleware that drops such frames or even
crashes at the sight of them. We seek to establish how
many public webservers have ECN enabled and how many
become unreachable when ECN support is advertised in a
SYN frame.

New TCP extensions often involve new option kinds. How-
ever, designers have to be aware that malconforming middle-
ware may also erroneously drop TCP frames with unknown
options. We aim to evaluate how common this behaviour is.

Table 1: DNS error rates
Domain does not exist 98625
Timed out (10 seconds) 42101
Server failure 19840
Unknown error 2227
Response truncated 1

Additionally, the limited TCP option space is an occasional
source of friction, especially in SYN frames where nothing
about the destination host can be assumed. Half of the
option space (20 bytes of a possible 40) in SYN frames is
generally spoken for now, leaving only 20 bytes remaining.

Designs which require more option space in SYN frames are
faced with a dilemma: The payload of a SYN frame is almost
universally ignored by TCP stacks and would present a rich
source of space. However, TCP clearly states that a payload
in a SYN frame is perfectly acceptable and that stacks may
enqueue such payloads for delivery to the application layer.
We aim to determine what fraction of hosts actually ignore
payloads in SYN frames.

2. EXPERIMENTAL SETUP
Approximately 10 million hostnames were extracted from a
Google web index from August 2008. These hostnames have
been referenced in a webpage that the Google crawler has
seen but have not been checked to exist. The extraction
takes the form of a MapReduce[5] which extracts hostnames
from URLs in the map phase and then reduces by removing
duplicates.

Since the number of duplicates can’t be exactly predicted,
the 10 million goal was only an estimate and the actual
number extracted was 10,240,701.

Each hostname was then resolved to a single IPv4 address
(the resulting DNS errors are broken down in table 1). Af-
ter eliminating many duplicate IP addresses, 1,445,303 re-
mained.

Each of these were probed using the state machine in fig-
ure 1. Upon entry to one of the lettered states, a frame is
transmitted. The type of frame depends on the letter of the
state.

‘S’ states transmit a simple SYN frame with no payload nor
options. ‘E’ states transmit a similar SYN, but with the



Figure 1: Prober state machine

CWR and ECN flags set as per [11]. ‘P’ states transmit a
SYN with a 16 byte payload. ‘O’ states transmit a SYN with
a 2 byte option with undefined kind number 42. Each type
of SYN uses a distinct source port number to distinguish
SYN/ACK frames from different experiments.

Each type of SYN is transmitted at most three times with
a two second timeout between them. A SYN/ACK with
the correct source address and port numbers is sufficient to
move onto the next type of SYN frame. A passive open
port is required on the target host and so all SYNs were
transmitted to port 80.

Failure to get a response to the plain SYN probing results
in marking the host as down and no other SYNs are sent.

For each each type of SYN frame transmitted, the number
of SYNs transmitted before getting a reply is recorded. For
the SYN with ECN flags, the presence of ECN flags in the
SYN/ACK is recorded. For the SYN with a payload, the
ACK number is examined to determine if the peer enqueued
the payload (by ACKing at least a byte of it), if it ignored the
payload (by ACKing only the SYN) or returned an invalid
ACK number.

After probing, 1,357,338 (93.91%) of hosts were found to
respond to a simple SYN to port 80 with a SYN/ACK and
thus were considered ‘up’.

3. UNKNOWN OPTIONS
Of 28, non experimental TCP option kinds assigned by IANA
at the time of writing[3], only a handful are in common usage
(EOL, NOP and maximum segment size[10], window scal-
ing[4], SACK permitted and SACK[8] and timestamps[4]).
New developments in TCP often require the use of new op-
tion kinds. Middleware which drops TCP frames containing
unknown options thus hamper the development of TCP.

Of the hosts tested, 2335 (0.17%) responded to the initial
SYN, but failed to respond to SYNs with the additional
option. Although not zero, this is a pleasingly low number.

4. SYN PAYLOADS

Table 2: Prober results
Initial set of non-duplicate IPs 1,445,303
Host responds to a simple SYN 1,357,338 (93.91%)

No response to non-standard options 2,335 (0.17%)
Responds to SYNs with payloads 1,234,146 (90.92%)

Ignores payload 1,234,146 (100%)
Acks payload 0 (0%)
Invalid ACK number 0 (0%)

No response to SYNs with payloads 123,192 (9.08%)
Responds to SYNs with ECN bits 1,349,711 (99.44%)

ECN successfully negotiated 14,407 (1.07%)
ECN not supported 14,407 (98.93%)

No response to SYNs with ECN bits 7,627 (0.56%)

TCP allows for payloads to be carried in SYN frames. How-
ever, due to the denial of service issues with enqueuing data
from unconfirmed connections, most stacks ignore such pay-
loads and, validly, ACK only the SYN in a SYN frame, caus-
ing the host to retransmit the application layer data in a
future packet.

When transmitting a SYN frame nothing can be assumed
about the destination peer except that it supports TCP.
The option space in a SYN is limited to 40 bytes, of which
20 bytes are taken by commonly used options.

It’s sometimes difficult or impossible to fit a desired option
in the remaining space, leading to workarounds like long
options[2]. If SYN payloads were universally ignored, this
could allow, after careful consideration, more aggressive ex-
tensions to TCP including a backwards compatible method
of upgrading to a new transport layer entirely.

Of the 1.3 million hosts queried, every one of those which
replied to a SYN with a payload ignored the payload and
ACKed only the SYN.

However, 123,193 (9.08%) ignored the SYN entirely.

5. EXPLICIT CONGESTION NOTIFICATION
ECN enjoys widespread support (in Linux, OS X and Win-
dows Vista at least). However, it is usually disabled by
default because of compatibility issues.

Although ECN principally affects the Type of Service field in
the IP header, its use is negotiated using a pair of formerly
reserved bits in the TCP header.

Floyd et al report in[9] that 9% of hosts ignored SYNs that
attempted to negotiate ECN in 2000 and that number had
ignored to 1% by 2004. In the same paper, 1.1% of hosts
were found to support ECN in 2000 and 2.1% by 2004.

We found that 14,407 (1.06%) of hosts supported ECN. How-
ever, 7,627 hosts (0.56%) ignored the SYN frames. This sug-
gests that the rate of improvement in passing ECN is falling
and that the support is stagnant or falling.

However, the failing hosts are not distributed randomly. The
7,627 hosts span only 4,613 /24 subnets. The top twenty
subnets account for 778 failing hosts (10%). WHOIS[1] in-



Figure 2: Overlap between failure modes

formation for 18 of those 20 subnets suggests that they are
located in China.

6. CONCLUSIONS
Too much middleware fails to adhere to published specifica-
tions. This imposes a cost on the rest of the world which
must delay or abandon positive extensions to TCP. This is
not a new problem, although no good solutions have arisen
in the years that it has been recognised.

We modified a version of mtr, a common traceroute tool, to
transmit TCP SYNs with ECN bits set in an effort to find
the middleware which was dropping these packets. Sadly, it
appears that middleware which drops such SYN frames also
tends to drop ICMP messages.

In the few cases where we did identify a good candidate, no
information was forthcoming. No common TCP ports were
open and OS fingerprinting was inconclusive.

The three types of failure which we investigated are certainly
not independent, as figure 2 shows. A host failing on one
count is much more likely to fail on one or both of the others.
0.01% of hosts failed on all three counts.

We can conclusively say that assuming that payloads in SYN
frames will be ignored appears to be safe. However, the very
high number of destinations which discarded such packets
completely hampers any developments which might make
use of this.

It’s unclear what to do about ECN. Without pressure it
appears that the rate of fixing malconforming middleware
is slowing, although it does appear that fixing a few key
locations would drastically improve the situation. The bias
towards Chinese hosts is puzzling but it may be caused by
national infrastructure filtering such packets.

7. REFERENCES
[1] L. Daigle. WHOIS Protocol Specification. RFC 3912

(Draft Standard), Sept. 2004.

[2] W. Eddy and A. Langley. Extending the space
available for tcp options, 2008.

[3] IANA. Transmission control protocol (tcp) option
numbers, 2008.

[4] V. Jacobson, R. Braden, and D. Borman. TCP
Extensions for High Performance. RFC 1323
(Proposed Standard), May 1992.

[5] S. G. Jeffrey Dean. Mapreduce: Simplified data
processing on large clusters. In OSDI’04: Sixth
Symposium on Operating System Design and
Implementation, December 2004.

[6] A. Kuzmanovic. The power of explicit congestion
notification. In SIGCOMM ’05: Proceedings of the
2005 conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 61–72, New York, NY, USA,
2005. ACM.

[7] A. Kuzmanovic, A. Mondal, S. Floyd, and
K. Ramakrishnan. Adding explicit congestion
notification (ecn) capability to tcp’s syn/ack packets,
2008.

[8] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow.
TCP Selective Acknowledgment Options. RFC 2018
(Proposed Standard), Oct. 1996.

[9] A. Medina, M. Allman, and S. Floyd. Measuring the
evolution of transport protocols in the internet.
SIGCOMM Comput. Commun. Rev., 35(2):37–52,
2005.

[10] J. Postel. Transmission Control Protocol. RFC 793
(Standard), Sept. 1981. Updated by RFC 3168.

[11] K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification (ECN) to
IP. RFC 3168 (Proposed Standard), Sept. 2001.


